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1. 

The classical theory of vibrations of beams is based on a number of assumptions, such
as small deflections, supports free to move in the direction of the longitudinal axis,
inextensional deflections, etc. If the ends of the beam are prevented from moving axially,
lateral deflections of the beam are accompanied by length changes in the beam fibers
that are in addition to the changes caused by bending. Due to the lateral deflection,
the length dx of the beam is increased by an amount [z1+ (dy/dx)2 −1] dx3 1

2(dy/
dx)2 dx [1–3]. The tensile strains resulting from these axial extensions add to the strains
caused by bending. This implies that more strain energy is stored in an axially constrained
beam than in a beam with ends free to move axially.

Large amplitude free flexural vibrations of slender beams have been investigated by
several researchers using continuum [4, 5] and finite element [6] methods. The effect of axial
displacement has been considered by Raju et al. [4], in which the strain energy U and the
kinetic energy T of the unloaded beam are given by
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where u is the axial displacement due to a tensile force. Raju et al. concluded that the effect
of the longitudinal deformation and inertia is to reduce the non-linearity, and the
longitudinal inertia is negligible for slender beams [4].

Singh et al. [5] studied and compared various analytical formulations for the problem
of large amplitude free vibrations of simply supported beams with immovable ends based
on the Rayleigh–Ritz method with one-term approximations for axial and transverse
displacements. It was found that the formulation wherein the quadratic term in the strain
displacement relation is linearized leads to an equation of motion, rather than energy
balance equation [5].

In a recent work [7], both experimental and theoretical results were presented for beams
carrying a concentrated mass at mid-span. It was found that experimental data for the
thicker beams correlated well with theory of linear deformation, but no so well for the
thinner beams. Chai et al. [8] later provided an improved model by adding a tensile force.
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By virtue of the Rayleigh–Ritz procedure, a multi-term series with sine function was used
for deflection curves for modes higher than the first [8].

In what follows here, different assumed shape functions are used to obtain the natural
frequency of a centrally loaded, fixed–fixed beam. By comparing each corresponding result
with that obtained experimentally, the effect of shape functions on the frequency of
vibration of axially constrained fixed–fixed beams under transverse load can then be
examined.

2.   

Rayleigh’s method states that a reasonable mode shape satisfying at least the geometric
support conditions leads to a good approximation for the natural frequency [1–3]. By
equating the maximum kinetic and potential energies of a loaded beam, we obtain
Rayleigh’s quotient for the natural circular frequency of the beams carrying a concentrated
mass at x= a:

v2 =
g EI(d2y/dx2)2 dx+g (EA/4)(dy/dx)4 dx

g rAy2 dx+My2=x= a

=
Kei +Kea

M*
, (1)

where EI is the flexural rigidity of the beam, A is the cross-sectional area, r is the mass
density of the beam, and M is the mass of the load alone. It is shown in equation (1) that
axial constraints, as a function of bending slope (dy/dx), act to increase the natural
frequency of beams, whereas a concentrated mass on the beam decreases the system
frequency.

In this work, each of the following commonly used shape functions [3] is incorporated
into equation (1) to obtain the fundamental frequency:

yW =
Wx2

48EI
(3l−4x), for 0E xE l/2; (2)

ym =
wx2

24EI
(x2 −2lx+ l2), for 0E xE l; (3)

yc = ym + yW , for 0E xE l; (4)

yt =C[1−cos (2px/l)], for 0E xE l. (5)

Note that yW is a static-deflection curve by considering only the load, W, while the
deflection curve ym is defined in terms of the distributed beam mass, m, only. The function
yc involves the combined contribution from both the distributed mass and the load. The
fourth function, yt , composed of one-minus-cosine, is the most commonly used and most
useful for such fixed-end cases [1, 3]. The parameter C in equation (5) refers to both the
displacement of the beam at x= l/2 and the displacement owing to the load. The effect
of this parameter on the frequency will be discussed in section 3.

3.    

A fixed–fixed loaded beam was tested by using a shaker system with an accelerator, as
shown in Figure 1. A sharp pivot hanger was used to carry the concentrated mass. The
geometries and properties of the four tested beams are listed in Table 1, in which is also
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Figure 1. The loaded beam system considered.

indicated the corresponding slenderness ratio m. Note that m= l/k, where k is the radius
of gyration of the beam’s cross-section. All the beams are of the same length and width,
but with different thicknesses, and are made of different materials (aluminum or steel).

Let us now define vW , vm , vc , and vt as the associated frequencies obtained from
equation (1) by using yW , ym , yc , and yt , respectively. By representing as v0 the fundamental
frequency for an unloaded beam and as v the frequency of the beam carrying a central
mass, the relationship between the frequency ratio b (=v/v0) and the mass ratio a

(=M/m) is studied by both analytical and experimental methods. Comparative results
with those obtained experimentally for beams 1 and 3 are shown in Figures 2 and 3,
respectively. The results for beams 2 and 4 are omitted here, as their comparison trends
are similar to those between beams 1 and 3. The ratio of Kea /Kei for beams 1 and 3 is
depicted in Figure 4 to illustrate the significance of axial stiffness as functions of the mass
ratio. Results obtained by using equation (1) without the term in EA are compared with
the same experimental results, as shown in Figure 5.

Several points are worth noting from Figures 2 to 5.

1. For thicker beams with a lower slenderness ratio (such as beam 3 in Figure 3) the
analytical frequencies obtained by using all the proposed assumed shape functions are
almost identical, and can predict the experimental results well. However, this is not the
case for beam 1, with a higher slenderness ratio. As shown in Figure 2, the models obtained
by using yc , yW, and yt , predict the experimental frequency well. Nevertheless, the analytical
frequency obtained from yt in equation (5) matches the experimental result very well.

2. Let us now investigate the effect of the parameter C in equation (5) on the frequency
result. It is defined as the amplitude of vibration of the beam at x= l/2 [3]. The result in
Figure 2 for bt was generated by assuming the parameter C as ym =x= l/2 + (13/35) yW =x= l/2,
by virtue of the concept of equivalent mass, meq [9]. Note that the factor of 13/35 is
associated with the shape function, yW [10]. It is interesting to see how other assumptions
would affect the results. It was found that the frequency ratio curve with yt would be much

T 1

Geometric properties and dimensions of the tested beams

Beam 1 Beam 2 Beam 3 Beam 4

Length (m) 1·0 1·0 1·0 1·0
Width (mm) 12·7 12·7 12·7 12·7
Thickness (mm) 3·175 3·175 4·7625 4·7625
E (GPa) 71 207 71 207
r (Mg/m3) 2·71 7·81 2·71 7·81
m (=zAl2/I) 1091 1091 727 727
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Figure 2. The frequency ratio versus the mass ratio for beam 1. ––, Analytical; e, experimental.

Figure 3. The frequency ratio versus the mass ratio for beam 3. ––, Analytical; ×, experimental.

higher than yc if C= yW =x= l/2, while the curve would be similar to that obtained with ym

if C= ym =x= l/2. In commenting on the work by Bert [11], Maurizi et al. [12] pointed out
that the trigonometric function (with C= ym ) is a good enough approximation for beams
with a uniformly distributed load, but not for those beams carrying one or two
concentrated loads. This is especially true for cases of thinner beams, where a very poor
prediction is given by ym as shown in Figure 2.

3. As shown in Figure 4, the ratio of Kea /Kei for beam 3 is less than one, whereas the
ratio for beam 1 becomes very large in comparison with unity as the concentrated mass

Figure 4. The stiffness ratio (Kea /Kei ) versus the mass ratio. —q, yc (beam 1); —e, yW (beam 1); —×, yc (beam 3);
––, yW (beam 3).
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Figure 5. The frequency ratio versus the mass ratio for beams 1 and 3 (without the EA term). ––, Analytical;
e, experimental (beam 1); ×, experimental (beam 3).

increases. This explains why the contribution of the EA term should be considered in
predicting the experimental frequency for beam 1, as shown in Figure 2.

4. The frequencies without considering the effect of axial force (only the term in EI)
are also compared with the experimental results (see Figure 5). If the mass ratio is less than
one, all of the analytical models give the same result. It was also found that the analytical
curves of bei for beams 1 and 3 are the same, owing to their non-dimensional characteristics
and the absence of Kea .

5. It is shown in Figure 5 that the discrepancy between the analytical and experimental
frequency ratios (bei ) is wider for thinner beams such as beam 1. As can be seen in equation
(1), these frequencies are smaller than those obtained before, when the axial effect was
included. The observation made in reference [13] for beam models without a tension effect
is no longer valid for thinner beams.

6. In general, the frequency obtained by yc is higher than that of yW , while the result
given by ym is always the lowest.

4.  

Four assumed shape functions, given in equations (2)–(5), have been used to predict the
frequency of four fixed–fixed beams with different slenderness ratios. The results with and
without an axial effect are both compared with experimental results. It is found that the
selection of the four considered functions has very little effect on the fundamental
frequencies of thicker beams (for example, for a slenderness ratio of 727), whereas the effect
is quite pronounced for thinner beams with a high slenderness ratio. The frequencies
obtained by using yt , yW and yc are closer to the experimental results. The choice of the
one-minus-cosine trigonometric function ( yt ) appears to yield values that are in
remarkable agreement with those obtained experimentally. It is recommended to apply yt

with an appropriate amplitude parameter, in association with the concept of equivalent
mass, to such non-linear beams with large deflection. In general, the model when using
ym gives poor estimates, except for beams with a low slenderness ratio.
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